Long-term tree growth rate, water use efficiency,and tree ring nitrogen isotope composition of Pinusmassoniana L. in response to global climate changeand local nitrogen deposition in Southern China
发表在:Journal of Soils and 10 1453-1465    于:2010
关键词:

Basal area increment (BAI) . Carbon sequestration . Global climate change . Masson pine . Nitrogen deposition . Tree ring

简介:

Purpose We aimed to investigate long-term tree growth rates, water use efficiencies (WUE), and tree ring nitrogen (N) isotope compositions (δ15N) of Masson pine (Pinus massoniana L.) in response to global climate change and local N deposition in Southern China. Materials and methods Tree annual growth rings of Masson pine were collected from four forest sites, viz. South China Botanical Garden (SBG), Xi Qiao Shan (XQS) Forest Park, Ding Hu Shan (DHS) Natural Reserve, and Nan Kun Shan (NKS) Natural Reserve in Southern China. The mean annual basal area increment (BAI), WUE, and δ15N at every 5-year intervals of Masson pine during the last 50 years were determined. Regression analyses were used to quantify the relationships of BAI and WUE with atmospheric carbon dioxide concentration ([CO2]), temperature, rainfall, and tree ring elemental concentrations at the four study sites.

中国科学院
  • 版权所有:中国科学院华南植物园
  • 联系电话:020-37252862
  • 传真:020-37252862
  • 信箱:lizhen2011@scbg.ac.cn
  • 地址:广州市天河区兴科路723号
  • 邮编:510650